skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bhattacharjee, Tiasha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. An extended population balance model (PBM) and a deep learning-based enhanced deep neural operator (DNO+) model are introduced for predicting particle size distribution (PSD) of comminuted biomass through a large knife mill. Experimental tests using corn stalks with varied moisture contents, mill blade speeds, and discharge screen sizes are conducted to support model development. A novel mechanism in the extended PBM allows for including additional input parameters such as moisture content, which is not possible in the original PBM. The DNO+ model can include influencing factors of different data types such as moisture content and discharge screen size, which significantly extends the engineering applicability of the standard DNO model that only admits feed PSD and outcome PSD. Test results show that both models are remarkably accurate in the calibration or training parameter space and can be used as surrogate models to provide effective guidance for biomass preprocessing design. 
    more » « less